پیش بینی تغییرات عمق آبشستگی در اطراف گوشواره ی پلها ) (abutmebt با استفاده از سامانه ی منطق فازی- عصبی ) (anfis و شبکه های عصبی (anns)

Authors

رضا محمدپور

فرهنگ محمدپور

abstract

به دلیل پیچیده بودن الگوی سه بعدی جریان در اطراف گوشواره ی پل ها، برآورد دقیق تغییرات عمق آبشستگی نسبت به زمان دشوار، و در برخی موارد غیر ممکن می باشد. در این تحقیق، ابتدا تغییرات عمق آبشستگی در اطراف گوشواره­ها به صورت آزمایشگاهی تحت شرایط آب زلال مورد بررسی قرار گرفته است و سپس با استفاده از نتایج حاصل از سه روش، وایازی غیر خطی (nlr)، شبکه­های عصبی (ann) و سامانه ی منطق فازی-عصبی (anfis)، تغییرات آبشستگی در اطراف این سازه­ها پیش بینی شده است. هر چند رابطه ی وایازی بدست آمده، نتایج بهتری را نسبت به روابط پیشین ارائه می­کند (r2=0.957, rmse=0.049 and mae=0.035)، اما سامانه ی منطق فازی- عصبی دارای دقت بالاتری نسبت به رابطه ی وایازی ارائه شده و هم­چنین روابط پیشین می باشد (r2=0.961, rmse=0.041and mae=0.025). نتایج حاصله  از فراسنج­های آماری نشان می­دهد که، هر دو روش annو anfis می­توانند به عنوان روش­های قدرتمندی در پیش بینی عمق آبشستگی مورد استفاده قرار گیرند.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش بینی تغییرات عمق آبشستگی در اطراف گوشواره‌ی پلها ) (Abutmebt با استفاده از سامانه‌ی منطق فازی- عصبی ) (ANFIS و شبکه های عصبی (ANNs)

به‌دلیل پیچیده بودن الگوی سه بعدی جریان در اطراف گوشواره‌ی پل ها، برآورد دقیق تغییرات عمق آبشستگی نسبت به زمان دشوار، و در برخی موارد غیر ممکن می‌باشد. در این تحقیق، ابتدا تغییرات عمق آبشستگی در اطراف گوشواره­ها به صورت آزمایشگاهی تحت شرایط آب زلال مورد بررسی قرار گرفته است و سپس با استفاده از نتایج حاصل از سه روش، وایازی غیر خطی (NLR)، شبکه­های عصبی (ANN) و سامانه‌ی منطق فازی-عصبی (ANFIS)، تغی...

full text

مدل‌سازی آبشستگی اطراف آبشکن در قوس‌ها با استفاده از منطق فازی و شبکه عصبی مصنوعی

آبشکن سازه­ای است از جنس سنگ، شن، پاره سنگ، خاک و یا بتن که با زاویه­ای نسبت به کرانه رودخانه جهت انحراف جریان آب از سواحل به مرکز آن به منظور جلوگیری از آبشستگی سواحل  احداث می­شود. از جمله مشکلات مهم مربوط به این سازه که ممکن است پایداری آن را به خطر اندازد، آبشستگی اطراف آن می­باشد. لذا مدل­سازی میزان آبشستگی اطراف این سازه بر اساس شرایط جریان از اهمیت بالایی برخوردار می­باشد. در این تحقیق د...

full text

پیش بینی تبخیر از سطح ایستابی کم عمق با استفاده از شبیه های وایازی و شبکه ی عصبی مصنوعی

رابطه ی بین عمق سطح ایستابی و تبخیر از سطح خاک در اغلب مناطق خشک و نیمه خشک بسیار مهم است. در این مناطق به علت آبیاری بیش از حد نیاز، اغلب سطح ایستابی نزدیک زمین است که باعث شوری خاک می‌شود. در این مطالعه از یک شبیه فیزیکی سطح ایستابی برای تعیین شدت تبخیر در خاکهای لوم شنی، لومی و لوم رسی در گلخانه و برای سه سطح ایستابی 40، 60 و 80 سانتی متری استفاده شده است. تبخیر از سطح خاک، تبخیر از سطح آزاد...

full text

پیش بینی مقاومت فشاری بتن حاوی خاکستر بادی، میکروسیلیس و سرباره ی مس با استفاده از روش های آماری ، شبکه ی عصبی مصنوعی و منطق فازی

در پژوهش حاضر، به پیش‌بینی مقاومت فشاری بتن حاوی پوزولان به کمک شبکه‌ی عصبی مصنوعی و تحلیل رگرسیون پرداخته شده است. اطلاعات به کاررفته شامل ۸۰ نمونه است که مقاومت فشاری ۷ و ۲۸ روزه‌ی آن‌ها تعیین شده است. در بخش شبکه‌ی عصبی مصنوعی از یک شبکه‌ی پرسپترون چند لایه با الگوریتم‌های متفاوت آموزشی پس انتشار خطا و تعریف یک یا چند لایه‌ی مخفی و تعداد ۷ نورون در لایه‌ی ورودی و ۱ نورون در لایه‌ی خروجی استف...

full text

پیش بینی قیمت سهام با استفاده از شبکه عصبی فازی مبتنی برالگوریتم ژنتیک و مقایسه با شبکه عصبی فازی

In capital markets, stock price forecasting is affected by variety of factors such as political and economic condition and behavior of investors. Determining all effective factors and level of their effectiveness on stock market is very challenging even with technical and knowledge-based analysis by experts. Hence, investors have encountered challenge, doubt and fault in order to invest with mi...

full text

My Resources

Save resource for easier access later


Journal title:
فصلنامه علمی - پژوهشی مهندسی منابع آب

Publisher: دانشگاه آزاد اسلامی واحد مرودشت

ISSN 2008-6377

volume 7

issue 20 2014

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023